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When an ice layer is melting from below, buoyancy-driven convection often appears in a thermally-unsta-
ble water layer. In this study, the onset of convection during time-dependent melting is investigated by
using similarly transformed disturbance equations under the propagation theory. The critical Rayleigh
numbers based on the water layer thickness are obtained for various conditions and compared with pre-
vious experimental and theoretical results. For a slowly melting system, the present prediction is quite
close to that under the quasi-static assumption. However, for a rapidly melting system the critical condi-
tion deviates from the quasi-static one. With increasing the ratio of the depth of the unstable layer to the
whole depth of the liquid layer the system becomes more unstable. But with increasing the phase change
rate the system becomes more stable. With decreasing the phase change rate the present results approach
the available critical conditions from the quasi-static model. The double cell pattern is predicted at the
critical condition and the present results agree reasonably well with existing experimental data.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The convective motion driven by buoyancy forces in ice melting
processes plays an important role in a wide range of systems, such
as seasonal freezing and melting of soil, lakes and rivers, artificial
freezing of the ground as a construction technique for supporting
poor soils, insulation of underground buildings, the melting of
the upper permafrost in the Arctic. Convective motion near the
phase-changing interface affects the local temperature and con-
centration fields which control geometric characteristics of the
interface and the melting or solidification rate. Therefore, funda-
mental understanding of the related convective instability is very
important.

The onset of convective instability in a horizontal fluid layer has
been studied extensively since Bénard’s [1] and Rayleigh’s [2] fa-
mous work. The study on the effect of buoyancy forces during
melting and freezing processes started from Boger and West-
water’s [3] experimental work. The related problem of the onset
of convective motion involves intrinsic complexities associated
with the solid/liquid phase change. Recently, hydrodynamic stabil-
ity associated with melting or solidification has attracted many
researchers’ interest [4–9]. Sparrow et al. [10] examined the cou-
pled effects on stability arising from thermal convection and solid-
ification of a single-component liquid medium. Later, Tien [11] and
ll rights reserved.

: +82 64 755 3670.
Sun et al. [12] extended their results considering the density max-
imum effect of water. However, the quasi-static assumption was
introduced in these studies, in other words solid/liquid interface
position is assumed to be invariant with respect to time. For water
systems, Yen [13] and Yen and Galea [14] determined the critical
conditions of the onset of buoyancy-driven convection
experimentally.

In this study, time-dependent melting of ice heated from below,
the so-called Stefan problem, is analyzed. When the temperature
profiles in the ice and the water phase and also the water layer
thickness vary with time, the onset conditions of buoyancy-driven
convection are found by using the propagation theory we have
developed [15–17]. The propagation theory deals with instability
problems of developing, nonlinear temperature profiles in the base
state. This theory assumes that at the critical time of the onset of
convection infinitesimal temperature disturbances are propagated
mainly within the thermal penetration depth. In the present study,
time-dependent linearized disturbance equations are transformed
similarly by using a similarity variable. New stability equations
including the phase-boundary effects are derived and analyzed.
The resulting stability conditions are compared with extant exper-
imental ones.

2. Governing equations

The system considered here consists of a semi-infinite ice layer
heated from below, as shown in Fig. 1. For time t P 0 the bottom
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Fig. 1. Schematic diagram of the system considered here.

Nomenclature

a dimensionless wavenumber,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y

q
a� dimensionless wavenumber based on the melt thick-

ness, ad
c specific heat (J/(kg K))
D differential operator, d/df
g gravitational acceleration vector (m/s2)
H thickness of the melt layer (m)
h dimensionless thickness of the melt layer, H=d
k thermal conductivity (W/m K)
kr thermal conductivity ratio, kS=kL

L latent heat of melting (J/kg)
P pressure (Pa)
R Rayleigh number based on the arbitrary length scale,

gð2cÞðTA � TmaxÞ2d3
=aLm

R� Rayleigh number based on the melt thickness scale, RTd3

Ra Rayleigh number based on the melt thickness,
gð2cÞðTA � TmaxÞ2H3=aLm

St Stefan number, L=½cðTA � TMÞ�
T temperature (K)
t time (s)
UðU;W;WÞ velocity vector (m/s)
w1 dimensionless vertical velocity component, W1d=aL

ðx; y; zÞ dimensionless Cartesian coordinates
Z vertical Cartesian coordinate (m)

Greek symbols
a thermal diffusivity (m2/s)
ar thermal diffusivity ratio, aS=aL

c constant in Eq. (4) (K�2)
d dimensionless depth,

ffiffiffiffiffiffi
4s
p

h0 dimensionless basic temperature, ðT � TAÞ=ðTA � TMÞ
h1 dimensionless temperature disturbance, gð2cÞ

ðTA � TmaxÞT1=aLm
k phase change rate
l viscosity (Pa s)
m kinematic viscosity (m2/s)
q density (kg/m3)
qr density ratio, qS=qL
s dimensionless time, aLt=d2

f similarity variable, z=d

Subscripts
A lower boundary
c critical state
L liquid phase
max density maximum
S solid phase
0 basic quantity
1 perturbed quantity
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boundary of the ice is superheated at a constant temperature and
then the melted layer grows from below. The coordinate system
is fixed at the bottom boundary, and the position of the solid/liquid
interface is moving in the Z-direction. By assuming that water is
incompressible like the Boussinesq approximation with small den-
sity change resulting from heating, the governing equations in the
melt layer are given [18]:

r � U ¼ 0; ð1Þ

qmax
o

ot
þ U � r

� �
U ¼ �rP þ lr2Uþ qLg; ð2Þ

oTL

ot
þ U � rTL ¼ aLr2TL; ð3Þ

qL ¼ qmax½1� cðTL � TmaxÞ2�; ð4Þ

where U denotes the velocity vector, l the viscosity, P the pressure,
q the density, T the temperature, g the gravitational acceleration
vector, t the time, and a the thermal diffusivity. It is known that
for water c ¼ 8� 10�6 (�C)�2 and Tmax ¼ 3:98 �C. For the solid layer
the temperature field can be described by

oTS

ot
¼ aSr2TS: ð5Þ

The subscripts L and S represent the liquid and the solid phase,
respectively. In the present study, the densities of solid and melt
are assumed to be equal, i.e. the volume change during the melting
process is neglected. The boundary conditions are given as follows:

W ¼ 0; TL ¼ TA at Z ¼ 0; ð6Þ

W ¼ 0; TS ¼ TL ¼ TM; kS
dTS

dZ
� kL

dTL

dZ

¼ qSL
dH
dt

at Z ¼ HðtÞ; ð7a;b&cÞ

W ¼ 0; TS ¼ T1 at Z ¼ 1; ð8Þ

where L denotes the latent heat of melting, HðtÞ the location of
melt–solid interface, TM the melting temperature at the solid–melt
interface, and T1 the temperature of solid far from the interface.
The important parameters to describe the present system are the
Prandtl number Pr, the Rayleigh number Ra, the temperature differ-
ence ratio between two phases h1 and the dimensionless maximum
density temperature hmax, defined by

Pr ¼ m
aL
; Ra ¼ gð2cÞðTA � TmaxÞ2H3

aLm
;

h1 ¼
ðTA � T1Þ
ðTA � TMÞ

and hmax ¼
ðTA � TmaxÞ
ðTA � TMÞ

;

where m denotes the kinematic viscosity. According to the work of
Boger and Westwater [3] and Yen [13] we linearize the density rela-
tion at the maximum temperature TA, choose HðtÞ as a length scale,
and define the Rayleigh number Ra as above. The fluid properties
are taken at ðTA þ TmaxÞ=2.

The basic conduction temperature is given subjected to the
boundary conditions, in dimensionless form, in Carslaw and
Jaeger’s book [19]:
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Fig. 3. Base temperature distribution for k ¼ 0:2 and h1 ¼ 1:5.
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h0;S ¼ �h1 þ ðh1 � 1Þ erfcðf= ffiffiffiffiffi
ar
p Þ

erfcðk= ffiffiffiffiffi
ar
p Þ for f > k; ð9Þ

h0;L ¼ �
erfðfÞ
erfðkÞ for f < k; ð10Þ

where h0;S ¼ ðTS�TAÞ
ðTA�TMÞ

, h0;L ¼ ðTL�TAÞ
ðTA�TMÞ

, ar ¼ aS=aL, �r ¼ r=dkr ¼ kS=kL,
z ¼ Z=d, h ¼ H=d, the Stefan number St ¼ cðTA � TMÞ=L, c the specific
heat, f ¼ z=

ffiffiffiffiffiffi
4s
p

, s ¼ aLt=d2, and an arbitrary length scale d. The
phase change rate k is obtained from

expð�k2Þ
erfðkÞ �

krffiffiffiffiffi
ar
p ðh1 � 1Þ expðk2=arÞ

erfcðk= ffiffiffiffiffi
ar
p Þ ¼

k
ffiffiffiffi
p
p

St
ð11Þ

and the phase change front can be obtained as h ¼ k
ffiffiffiffiffiffi
4s
p

which cor-
responds to H ¼ k

ffiffiffiffiffiffiffiffiffiffi
4aLt
p

in dimensional form. For water at 0 �C,
St ¼ ðTA � TMÞ=79:03, ar ¼ 9:04 and kr ¼ 3:92 [20]. In this case St
and h1 are determined for a given ðTA � TMÞ and ðTA � T1Þ, and then
k is determined by solving Eq. (11). For a given k, the base temper-
ature profiles are obtained from Eqs. (9) and (10). The phase change
rate and the base temperature profiles for the specific case are given
in Figs. 2 and 3. For the limiting case of h1 ¼ 1, i.e. T1 ¼ TM, the
phase change rate k can be determined from the solution of
1
k

expð�k2Þ
erfðkÞ ¼

ffiffiffi
p
p

St . This solution is independent of ar and kr , and it is fur-
ther simplified to k ¼

ffiffiffiffiffiffiffi
2St
p

for small k. When the volumetric change
during the melting process occurs, the liquid moves in the Z-direc-
tion. Then the base temperature profile is given by

h0;L ¼ �
erfffþ kð1=qr � 1Þg

erfðk=qrÞ
for f < k: ð12Þ

The phase change rate k is determined from

expf�ðk=qrÞ
2g

erfðk=qrÞ
� krffiffiffiffiffi

ar
p ðh1 � 1Þ expðk2=arÞ

erfcðk= ffiffiffiffiffi
ar
p Þ ¼

k
ffiffiffiffi
p
p

St
: ð13Þ

For the limiting case of qr ¼ 1 Eqs. (12) and (13) reduce to Eqs.
(10) and (11), respectively. For water of 0 �C with qr ¼ 0:917[20],
Eq. (13) gives k ¼ 0:14610 for the case of TA ¼ �T1 ¼ 5 �C, i.e.
h1 ¼ 2. This is slightly lower than k ¼ 0:1535 for qr ¼ 1. Therefore,
for water the volumetric change during melting is not significant.

Under linear theory, Eqs. (1)–(4) are decomposed into the
unperturbed quantities and their perturbed ones at the onset of
convection. In the water layer, neglecting the volume expansion
during the melting process, the dimensionless disturbance equa-
tions are obtained as

1
Pr

o

os
� �r2

� �
�r2w1 ¼ �ðh0;L þ hmaxÞ �r2

1h1;L; ð14Þ

oh1;L

os
þ Rhmaxw1

oh0;L

oz
¼ �r2h1;L; ð15Þ
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Fig. 2. Variation of the phase change rate k with imposed temperatures.
where the subscript 1 denotes the perturbed quantities and w is the
vertical velocity component with R ¼ gð2cÞðTA � TmaxÞ2d3

=aLm. Note
that h1 has the scale of aLm=ð2gcDTd3Þ and w1 has that of aL=d. In the
ice layer, the dimensionless disturbance equation of temperature is
given by

oh1;S

os ¼ ar
�r2h1;S: ð16Þ

In the present study the scaling of W1 � 2gðcDTÞT1H2=m in
dimensional form is obtained from Eq. (2). This relation means that
w1=h1 � h2 � s. If disturbance amplitudes follow the property of
the base temperature fields shown in the relations (9) and (10),
it is probable that oh1=os ¼ �ðf=ð2sÞÞðdh�=dfÞ. Therefore, under
the normal mode analysis the dimensionless amplitude functions
of disturbances are assumed to have the relation of

½w1; h1;L; h1;S� ¼ ½d2w�ðfÞ; h�LðfÞ; h
�
SðfÞ� exp½iðaxxþ ayyÞ�; ð17Þ

where the superscript ‘‘*” means the similarly transformed ampli-
tude functions of disturbances and ax and ay are the wavenumbers
in the x and the y direction, respectively. The above equation means
that the amplitude of dimensionless disturbances is assumed to be
a function of the similarity variable fð¼ z=dÞ where d ¼

ffiffiffiffiffiffi
4s
p

. This
kind of similarity transformation has been widely used in similar
problems [4,15–17,21,22], with which stability analysis is called
the propagation theory.

Substituting Eq. (17) into (14)–(16) with a2 ¼ a2
x þ a2

y ,
o=os ¼ �ð2f=sÞD and o2=oz2 ¼ ð1=4sÞD2 gives the following self-
similar stability equations:

D2 þ 2
ar

fD� a�2
� �

h�S ¼ 0; ð18Þ

ðD2 þ 2fD� a�2Þh�L ¼ R�hmaxw�Dh0;L; ð19Þ

ðD2 � a�2Þ2 þ 2
Pr
ðfD3 � a�2fDþ 2a�2Þ

� �
w� ¼ a�ðhmax þ h0;LÞh�L: ð20Þ

The boundary conditions are obtained from Eqs. (6)–(8):

w� ¼ h�L ¼ 0 at f ¼ 0; ð21Þ

w� ¼ 0; h�S ¼ h�L; krDh�S ¼ Dh�L at f ¼ k; ð22a;b&cÞ

h�S ¼ 0 at f ¼ 1: ð23Þ

where R� ¼ Rd3, a� ¼ ad and D ¼ d=df. Here R� and a� are assumed to
be eigenvalues having the meaning of the Rayleigh number and the
horizontal wavenumber based on the melt thickness, HðtÞð/

ffiffi
t
p
Þ.

Through the similarity assumption of Eq. (17), the terms
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ð2=arÞfDh�S and 2fDh�L appear in Eqs. (18) and (19), respectively.
These terms are neglected in quasi-static analysis, where the terms
of oð�Þ=os are assumed to be 0.

3. Solution method

The stability equation for the solid layer can be solved indepen-
dently of the melt layer by using the boundary condition Eq. (23).
By using the WKB approximation [23], the temperature distur-
bance in the solid layer can be approximated as

h�S �
C

f2

a2
r
þ 1

ar
þ a�2

	 
1=4

� exp �
Z f

k

f2

a2
r
þ 1

ar
þ a�

2

 !1=2

df

2
4

3
5 exp � f2

2ar

 !
; ð24Þ

which satisfies the upper boundary condition Eq. (23). The bound-
ary conditions (22b) and (22c) reduce to

Dh�L ¼ �kr
k2

a2
r
þ 1

a2
r
þ a�

2

 !1=2

þ k
ar
þ 1

2
k
a2

r

k2

a2
r
þ 1

a2
r
þ a�

2

 !�1
2
4

3
5h�L

at f ¼ k: ð25Þ

Through this procedure, the stability equations to be solved are Eqs.
(19) and (20) under the boundary conditions (21), (22a) and (25).
For the limiting case of kr ¼ 0 and kr ¼ 1, the boundary condition
Eq. (25) reduce to Dh�LðkÞ ¼ 0 and h�LðkÞ ¼ 0, respectively.

These stability equations are solved by employing the outward
shooting scheme. For a given Pr; hmax; k; kr and ar, in order to inte-
grate these stability equations the proper values of Dw�;D2w� and
Dh� at f ¼ 0 are assumed for a given a�. Since the stability equa-
tions and their boundary conditions are all homogeneous, the va-
lue of D2w�ð0Þ can be assigned arbitrarily and the value of the
parameter Ra� is assumed. This procedure can be understood easily
by taking into account of the characteristics of eigenvalue prob-
lems. After all the values at f ¼ 0 are provided, the boundary value
eigenvalue problem is transformed into the initial value problem of
the ordinary differential equations which can be easily solved
numerically.

Integration is performed from f ¼ 0 to a melt–solid interface
f ¼ 0 with the fourth order Runge–Kutta–Gill method. If the
guessed values of R�, Dw�ð0Þ and Dh�ð0Þ are correct, the boundary
conditions for w� and h� will be satisfied at the melt–solid inter-
face. To improve the initial guesses the Newton–Raphson iteration
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Fig. 4. Marginal stability curve for k ¼ 0:2 and hmax ¼ 0:5.
is used. The marginal stability curve for the typical case is given in
Fig. 4. The region above the curve denotes the unstable state
whereas that below the curve is stable state. In the figure the min-
imum value of R� is the critical condition marking the onset of
buoyancy-driven convection. At this critical condition the normal-
ized disturbance quantities are featured in Fig. 5, wherein the
quantities have been normalized by the corresponding maximum
magnitude. The negative value of w� near the melting front means
that the double cell pattern may set in. This cell pattern is due to
the stable region near the melting front through the density max-
imum effect. This double cell pattern has not been predicted in the
usual Boussinesq fluids, where the linear density–temperature
relation is assumed [4,15–17,21].

4. Results and discussion

The dimensionless parameters governing the present system
are St, h1 and hmax. The effects of St and h1 on convective instabil-
ities during the melting can be represented by k through Eq. (11)
and the boundary condition (22). In Figs. 6 and 7, the effects of
hmax and k on the critical Rayleigh number are summarized. In
these figures Ra ¼ R�k3 is the Rayleigh number based on the melt
thickness HðtÞ. The effect of k on the critical Rayleigh number is
negligible for the case of k < 0:1. As shown in Fig. 3, the basic tem-
perature profile in the liquid phase is nearly linear. Therefore, the
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Fig. 6. The effects of k on the critical condition.
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ratio of the depth of the unstable layer to the whole depth of the
liquid layer can be represented by hmax. The larger hmax is, the dee-
per the unstable region is. Therefore, the system becomes unstable,
i.e. yields a lower critical Rayleigh number as hmax increases.

For the limiting case of h1 ¼ 1 and k ¼
ffiffiffiffiffiffiffi
2St
p

, Veronis [18] con-
ducted stability analysis on the present system by neglecting the
temporal growth of disturbances and using the boundary condition
of h�LðkÞ ¼ 0. Since he excluded the solid layer in the analysis, their
boundary condition of hLðkÞ ¼ 0 corresponds to the limiting case of
kr ¼ 1. As shown in Fig. 7, the present critical conditions for the
case of k < 0:2 are quite close to his predictions, i.e. the quasi-static
assumption seems to be valid. However, for the rapidly melting
case of large k, the present critical condition deviates from his pre-
diction. The present critical conditions are compared with available
experimental ones in Fig. 8. As shown in this figure, the present
prediction agrees reasonably well with Yen’s [13] experimental re-
sults within the 20% error bound. In his experiments, water was
added through the bottom boundary to compensate the volumetric
shrinkage during the melting process. Therefore, in the present
study the density change can be neglected and compared with
his experimental data. The density change during the melting pro-
cess may make the system slightly unstable since the density
change effect reduces the phase change rate k (see Eq. (13)) and
may confine the disturbances within the narrow region.
5. Conclusions

The onset of buoyancy-driven convection in a water layer
melted from below is analyzed by considering both water and
ice phases. New stability equations are derived using the propa-
gation theory. The thermal disturbance distribution in the ice
layer is approximated by the WKB method and the stability
equations in the melt phase are solved numerically. For a slowly
melting system, the critical conditions approach the previous
theoretical ones which are obtained under the quasi-static
assumption. However, for a rapidly melting system the critical
Rayleigh number deviates from the previous predictions. The
present results show that the propagation theory can be applied
to the stability analysis of the systems experiencing the phase
change.
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